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Multi-Agent Decision-Making Problems

Traffic Monitoring

Goal: Maximize knowledge of traffic conditions based on live data collected by distributed traffic sensors

Efficient route coverage
Proven accuracy
Traffic Monitoring Sol P AL L

. g . y B . . .
- o - = o g ‘ Simple installation

Impervious to weather, road
maintenance, wear and renewals

Convert roadside optical fibre o Each OptaSense installation 9 Fibre-optic sensing technology
into a traffic sensor can monitor up to 80km creates an array of intelligent sensors

Detecting passing traffic along o Delivering highly accurate and @ Providing better information for
the entire monitored road timely traffic flow indicators traffic engineers and road users

For more information on the
OptaSense Traffic Monitoring Solution
Contact your local representative or visit www.optasense.com

Problem: How should the sensors coordinate where to observe to achieve the goal?!

ILi, Mehr, Horowitz, Transportation Research B '23
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Multi-Agent Decision-Making Problems

Event Detection

Goal: Maximize number of detected events based on live data collected by wireless sensor networks

Problem: How should the sensors coordinate where to observe to achieve the goal??

’Kumar, Rus, Singh, |IEEE Pervasive Computing '04
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Multi-Agent Decision-Making Problems

Wildfire Management
Goal: Maximize knowledge of wildfire influence based on live data collected by distributed remote sensors
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Problem: How should the sensors coordinate where to observe to achieve the goal?3

3SAfghah, Razi, Chakareski, Ashdown, IEEE INFOCOM '19
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Multi-Agent Coordination Problems

All above are submodular maximization problems!

1 A B B___.-—E]

Given: oo

0.8
) agentsN 0.6 //?

non-decreasing < /
. . . . . - 0.4 jz'z
e finite available action sets V;, Vi ¢ j
’ 0.2 |/
(e.g., a set of FOV's for a camera to choose from) /
00 2 4 6 8 10
e set function f: ollienVi 3 R O A
0.8

the agents N select actions {a; };cn to solve

g
S
|
submodular = \
X
(and 2nd-order submodular) 3 04\
<
=

bomax f({aitien)

0 B s s s = s = e = B

0 2 4 6 8 10
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lAtanasov; Bilmes; Bushnell; Calinescu; Chekuri; Clark; Corah; Gharesifard; Hassani; Hespanha; lyer; Karbasi; Kia; Konda; Krause; Li; Marden:
Martinez; Michael; Mirzasoleiman; Mokhtari; Poovendran; Rezazadeh; Robey; Smith; Sundaram; Tokekar; ...
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Agents Have Limited Communication Bandwidth and Data Rate
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Agents Have Limited Communication Bandwidth and Data Rate

Having all sensors coordinating with all other is often impractical:
o Impractical communication and computation loads/requirements
 Impractical decision time

1 { 4
y {

L\ N \
V) \“\ ATy ):,_

.......
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Agents Have Limited Communication Bandwidth and Data Rate

Research Question:
Given the agents’ communication constraints, what is the best network configuration?

EMERGING INDUSTRIES (continued)

Artificial intelligence: Data-intensive science — the
interaction between people and technology — and the use
of a convergent approach to research come together in the
research area of Al. For example, imagine a future in which
autonomous vehicles fill the roads and the sky, all the while
constantly communicating with each other, the roadway and
traffic control signals. Understanding the behavior of this
“swarm” and ensuring that terrestrial and aerial traffic flow
evolves safely and efficiently is a research challenge that
requires insights from biology, mathematics, engineering,
human psychology and computer science. The research
addresses the problem of how to integrate large flows of
data from sensors in vehicles and embedded in the roadway
and visual information from cameras. The traffic flow of

highways and skyways of the future is just one example of
the ways in which research that provides the ability to deploy
Al on a large scale will transform our lives. Other potential
outcomes from research on Al and cloud computing include
robot assistants for the home-bound, diagnostic systems

to aid physicians, improved factory automation and, when
coupled with novel approaches to the analysis of large data-
streams, new tools for the intelligence community.

NSF Strategic Plan 2022-2026
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Network Configuration Matters to Optimization Performance

Area Monitoring Example:
® 4 cameras select their FOV's to collaboratively maximize total covered area
® Each camera is able to receive information from only up to 2 others
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Network Configuration Matters to Optimization Performance

Area Monitoring Example:
® 4 cameras select their FOV's to collaboratively maximize total covered area
® Each camera is able to receive information from only up to 2 others

..3

cameras 1-3 already decided
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Network Configuration Matters to Optimization Performance

Area Monitoring Example:
® 4 cameras select their FOV's to collaboratively maximize total covered area
® Each camera is able to receive information from only up to 2 others

and camera 4 has 3 options
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Network Configuration Matters to Optimization Performance

Area Monitoring Example:

® 4 cameras select their FOV's to collaboratively maximize total covered area
® Each camera is able to receive information from only up to 2 others

All possible local network configurations for camera 4:

Scenario 1: Scenario 2:
Listen to 1 & 2, no info about 3 Listen to 1 & 3: no info about 2

1" ¥L1‘,;
'2 J '8 3 iz '® 3

|

Best network: gives largest total covered area

Xu and Tzoumas Performance-Aware Self-Configurable Multi-Agent Networks

Scenario 3:
Listen to 2 & 3: no info about 1




Distributed Simultaneous Action Coordination & Network Self-Configuration

For each agent : € NV, given:

/
e reachable neighbor candidates M; C N \ i

e communication bandwidth budget «;

e finite action sets V;, Vi e N/

e set function f: 2llienVi 5 R

/ \
agent 7 needs to select neighborhood N; and action a;
to collaboratively solve

IMa IMa (4
Ni§M¢,|Ni|)§(ai,Vi€N az'EViaé(iEN f({aZ}ZEN)
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Distributed Simultaneous Action Coordination & Network Self-Configuration

For each agent : € NV, given:

/
e reachable neighbor candidates M; C N \ i

e communication bandwidth budget «;

e finite action sets V;, Vi e N/

e set function f: 2llienVi 5 R

/ \
agent 7 needs to select neighborhood N; and action a;
to collaboratively solve

Ima Ima (4
NigMia|Ni|)§(ai7Vi€N aiEVi,‘V)'%EN f({az}zéN) \

if M; =N \1and a; = oo, then becomes
the original maximization problem
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Current Distributed Submodular Maximization Approaches

max max a;}; has not been studied before
N; CM;, IN;| <a;,VieN a; EV;,VieN f({ ’L}ZGN)

Distributed algorithms for max f({aitien):

a; €EV;, VieN

. Sequential Greedy and SOTA variants:!™

. . agents must relay info
- Suboptimality guarantee 1-1/e or 1/2 / e

- Decision time including communication delays:

>O(
>O(

N
N

>diam(G)) time for connected, directed graphs?

2) time for connected, directed graphs | O(|N]?) time for strongly connected, undirected graphs’

S a0 B W NN B

Xu and Tzoumas

-isher, Nemhauser, Wolsey, Math Prog Studies '78
Liu, Zhou, Tokekar, RAL 20

Konda, Grimsman, Marden, ACC '22

Robey, Adibi, Schlotfeldt, Hassani, Pappas, L4DC 21
Du, Qian, Claudel, Sun, TAC 22

Rezazadeh, Kia, Automatica '23
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Current Distributed Submodular Maximization Approaches

max max a; b, has not been studied before
N; C M, |IN;| <o, VieN a; €EVi,VieN f({ z}zGN)

Distributed algorithms for N egjﬁéex\f f(laitien):

. Sequential Greedy and SOTA variants:1™

. . agents must relay info
- Suboptimality guarantee 1-1/e or 1/2 / e

- Decision time including communication delays:
> O(|N)?diam(G)) time for connected, directed graphs?
> O(|JN|?) time for connected, directed graphs | O(JN|?) time for strongly connected, undirected graphs?

. Works that examine impact of limited information access to suboptimality bound:"™

- Quantification for worst-case f : Suboptimality guarantee 1/(a + 1) ———

degrades proportionally to number of
agents that select actions independently

-isher, Nemhauser, Wolsey, Math Prog Studies 78 ‘Gharesifard and Smith, TCNS "18
Liu, Zhou, Tokekar, RAL '20 8Grimsman, Ali, Hespanha, Marden, TCNS '19
Konda, Grimsman, Marden, ACC '22 9Corah, Michael, CDC 18

Robey, Adibi, Schlotfeldt, Hassani, Pappas, L4DC 21
Du, Qian, Claudel, Sun, TAC 22
Rezazadeh, Kia, Automatica '23

S a0 B W NN B
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Our Contributions

Introduced distributed optimization algorithm:

_____________________________________________________________________________________________________________________________________________________________

Action Coordination
4 )
Each agent coordinates actions to maximize f({a;};c a)

and jointly incurs a suboptimality cost C({N;}; c o) due to
resource-minimal distributed coordination in favor of scalability
J

-
Network {N;}; c v
Network Design )

¢ ; ; . )
Each agent designs neighborhood N; to optimize C({N;}; c x)
and thus jointly maximize the approximation performance of
Action Coordination 1n the subsequent iteration

_____________________________________________________________________________________________________________________________________________________________

Algorlthm 1: AlterNAting COordination and Network-Design Algorithm (Anaconda)

A

Agent actions {a;}; c
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Our Contributions

Introduced distributed optimization algorithm:

_____________________________________________________________________________________________________________________________________________________________

Action Coordination
4 )
Each agent coordinates actions to maximize f({a;};c a)

and jointly incurs a suboptimality cost C({N;}; c o) due to
resource-minimal distributed coordination in favor of scalability
J

-
Network {N;}; c v
Network Design )

¢ ; ; . )
Each agent designs neighborhood N; to optimize C({N;}; c x)
and thus jointly maximize the approximation performance of
Action Coordination 1n the subsequent iteration

A

Agent actions {a;}; c

_____________________________________________________________________________________________________________________________________________________________

Algorlthm 1: AlterNAting COordination and Network-Design Algorithm (Anaconda)

Key ideas in making Algorithm 1 scalable and near-optimal:

. |Design Action Coordination and Network Design steps to require minimal communications

Quantify impact of network configuration {NVi}ieAr to suboptimality of action coordination
. Use quantification to optimize network configuration via alternating optimization
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Our Contributions

Introduced distributed optimization algorithm:

_____________________________________________________________________________________________________________________________________________________________

Action Coordination
4 )
Each agent coordinates actions to maximize f({a;};c a)

and jointly incurs a suboptimality cost C({N;}; c o) due to
resource-minimal distributed coordination in favor of scalability
J

-
Network {N;}; c v
Network Design )

¢ ; ; . )
Each agent designs neighborhood N; to optimize C({N;}; c x)
and thus jointly maximize the approximation performance of
Action Coordination 1n the subsequent iteration

A

Agent actions {a;}; c

_____________________________________________________________________________________________________________________________________________________________

Algorlthm 1: AlterNAting COordination and Network-Design Algorithm (Anaconda)

Key ideas in making Algorithm 1 scalable and near-optimal:

. Design Action Coordination and Network Design steps to require minimal communications

. Use quantification to optimize network configuration via alternating optimization C({N;}ien)
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Our Contributions

Introduced distributed optimization algorithm:

_____________________________________________________________________________________________________________________________________________________________

Action Coordination
( : : C "
Each agent coordinates actions to maximize f({a;}; < n7)

and jointly incurs a suboptimality costiC({N;}; c /)
resource-minimal distributed coordination in favor of scalability
J

-
Network {N;}; c v

Network Design )

‘Each agent designs neighborhood N; to optimize|C({N;}; c v)

and thus jointly maximize the approximation performance o
Action Coordination 1n the subsequent iteration

A

Agent actions {a;}; c

_____________________________________________________________________________________________________________________________________________________________

Algorlthm 1: AlterNAting COordination and Network-Design Algorithm (Anaconda)

Key ideas in making Algorithm 1 scalable and near-optimal:

. Design Action Coordination and Network Design steps to require minimal communications

. Quantify impact of network configuration {/N }ieAr to suboptlmallty of action coordination
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A Closer Look to Algorithm 1

At iteration t:

Stage 1 (ActionCoordination). Simultaneously sample action a; ; € V; based on past rewards to solve

ai,¢ Ve N f{aittien)

Stage 2 (NeighborSelection). Simultaneously sample neighborhood N, ; C M, based on past rewards to solve

max Q.; .
Nit CTM;, INit| <a;,VieN f({ Zyt}’b EN)

Xu and Tzoumas Performance-Aware Self-Configurable Multi-Agent Networks




ActionCoordination

Given neighborhood N, ;1 selected in Stage 2 of time step ¢t — 1, each agent i:

1. Compute rewards 7, ;1 = f(a|{ajt-1}jen;, .),Va €V; -~ marginal gain in f of selecting
action a given neighborhood N; ;1

RN

® (] . . 1
3. Sample action a; ; € V; from p; ; Multiplicative Weights Update

2. Update probability distribution p; ; over V; using {rs :—1}a eV,

lArora, Hazan, Kale, Theory of Computing, '12

Xu and Tzoumas
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ActionCoordination

Given neighborhood N, ;1 selected in Stage 2 of time step ¢t — 1, each agent i:

1. Compute rewards 7, ;1 = f(a|{ajt-1}jen;, .),Va €V; -~ marginal gain in f of selecting
action a given neighborhood N; ;1

RN

® (] . . 1
3. Sample action a; ; € V; from p; ; Multiplicative Weights Update

2. Update probability distribution p; ; over V; using {rs :—1}a eV,

lArora, Hazan, Kale, Theory of Computing, '12

Xu and Tzoumas
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Suboptimality Performance of ActionCoordination

Definition (Suboptimality Cost of ActionCoordination)

The suboptimality cost due to network decentralization is C({N;t}ien) = D i c ar Cit(Niyt ), where

Cit(Nig) = flaie|{ajitien:.) — f(ait)
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Suboptimality Performance of ActionCoordination

Definition (Suboptimality Cost of ActionCoordination)

The suboptimality cost due to network decentralization is C({N;t}ien) = D i c ar Cit(Niyt ), where

Cit(Nig) = flaie|{ajitien:.) — f(ait)

Intuition:

—C; + captures the overlap of ¢'s action and N ;'s actions:

N +'s actions
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Suboptimality Performance of ActionCoordination

Definition (Suboptimality Cost of ActionCoordination)

The suboptimality cost due to network decentralization is C({N;t}ien) = D i c ar Cit(Niyt ), where

Cit(Nig) = flaie|{ajitien:.) — f(ait)

Intuition:

—C; + captures the overlap of ¢'s action and N ;'s actions:

N +'s actions
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Suboptimality Performance of ActionCoordination

At each time step ¢, ActionCoordination instructs each agent ¢ € N to select action a;; such
that when ¢ > O(1/€?), C; +(N;¢) is minimized in expectation with respect to a; 4, i.e.,

2 [Cit(Nig)] < min [f(al{aji}jen;,) — fla)] +e

a€cV;
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Suboptimality Performance of ActionCoordination

At each time step ¢, ActionCoordination instructs each agent ¢ € N to select action a;; such
that when ¢ > O(1/€?), C; +(N;¢) is minimized in expectation with respect to a; 4, i.e.,

2 [Cit(Nig)] < min [f(al{aji}jen;,) — fla)] +e

a€cV;

and that when ¢t > O(|N|?/€2), for all agents’ actions A; £ {a;;}icn,

L[f(A)] 2 (1= rp) | FA%T) = 3 E[Cip(Nig)]| —e
\ L ieN . D

S~

- f's curvature Kk = 1 — min,¢y f(v);(f;gv\z) c [0,1].

K+ measures how V's elements substitute each other:

o k=0 f(A) =2 ,caf(2)
e k=1 dzeVst f(V)=fV\=2).
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Neighbor Selection: A Bandit Supermodular Minimization Approach

Problem (Neighbor Selection)

At each time step t, each agent ¢ € N needs to select neighborhood N; ; C M, online to solve

min Cit(Nit)
Nit C M, [N ¢| < ay !

being able to evaluate C; (M), VM C M, only after having selected M as neighbors and
received actions {a; +};ec m from them.

Xu and Tzoumas Performance-Aware Self-Configurable Multi-Agent Networks




Neighbor Selection: A Bandit Supermodular Minimization Approach

Problem (Neighbor Selection)

At each time step t, each agent i € N needs to select neighborhood N; ; C M, online to solve

min C. (N
N’i,t g Mia |Nfi,,t| S o Z7t( Zat )1 \

being able to evaluate|C; (M), VM C M, only after having selected M as neighbors and
received actions {a;}; e m from them.

Lemma (Monotonicity and Supermodularity of C; ;)

Given non-decreasing and 2nd-order submodular function f and
action a; ¢, C;+(N; ) is non-increasing and supermodular in N ;

-
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Neighbor Selection: A Bandit Supermodular Minimization Approach

Problem (Neighbor Selection)

At each time step t, each agent i € N needs to select neighborhood N; ; C M, online to solve

min C. (N
N’i,t g Mia |Nfi,,t| S o Zat( Zat )1 \

being able to evaluate|C; (M), VM C M, only after having selected M as neighbors and
received actions {a;};e m from them.

Lemma (Monotonicity and Supermodularity of C; ;)

Given non-decreasing and 2nd-order submodular function f and
action a; ¢, C;+(N; ) is non-increasing and supermodular in N ;

-

Difficulty: NP-Hard to achieve approximation bound better than /1]71(1 —e ") (>1—1/e) even when
Ci t(M), YM C M, can be evaluated before M is selected
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A Closer Look to Algorithm 1

At iteration t:
Stage 2 (NeighborSelection). Simultaneously sample neighborhood N; ; C M, based on past rewards to solve

IMax a; - R mln C N
Ni,thia|Ni,t|§aiav’i€N f({ Z’t}ZGN) Ni,thia|Ni,t|Sai z,t( Z’t)
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NeighborSelection

Given action a; ; selected in Stage 1 of time ¢t and NV, ; < (), for k =1,..., a;, each agent ::

(k)

over M, using past reward 7 .(x)

1. Update probability distribution g, ; B 4 g
t—17

- EXP3-IX algorithm!

2. Sample k-th neighbor jt( e M; from q( ) and receive its action a_ i)

3. Compute reward 7 ) , = C;1(Nip) — Ci e (N U3% Y and NGy - N, UG

\ . . . . (k)

- marginal loss in C; ; of adding neighbor 7,
to neighborhood N ;

N\ i\ M,

WN?;
M,

7 e

INeu, NeurlPS, '15
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Suboptimality Performance of NeighborSelection

At each time step ¢, NeighborSelection instructs each agent ¢ € N to
select neighborhood M ; such that when ¢t > O(|M;| a2 / €2),

L [Cit( Nt )] < R7H(L— e ™) E [Cio (N7 )] + e
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Suboptimality Performance of NeighborSelection

Proposition

At each time step ¢, NeighborSelection instructs each agent ¢ € N to
select neighborhood M ; such that when ¢t > O(|M;| a2 / €2),

L [Cit(Nig)] S k7 (1—e ™) E[Ci o (NF)] + €
l

N is agent ¢'s optimal neighborhood given actions {a; ¢ }+ ¢ (1] selected by

ActionCoordination during horizon 1":

N> € ar min C[C e (N
’ gNi,t CM;, |Nit|l <oy [ Z,t( bt )]

Xu and Tzoumas Performance-Aware Self-Configurable Multi-Agent Networks




Approximation Performance of Anaconda

Theorem 1 ( )

At each time step t, Anaconda instructs each agent i € N to select action a;: and
neighborhood N ; such that

o If the emergent network is fully centralized with N; , = N'\ i, when t > O(|N|? / €?),

4 1 OPTy _
L f(A)] = gy f(A T) ¢

/

Match the tight bound of Sequential Greedy [Conforti and Cornoejols, 78]

No need to select neighbors since every agent has
enough bandwidth budget to hear all others
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Approximation Performance of Anaconda

Theorem 1 ( )

o If the emergent network is fully decentralized with N; ; = (), when ¢ > é(\/\/|2 /€%),

2[f(A)] > (1= 5p) FAT) — e

/

Match the bound [Sviridenko et al. "17]

No agent can hear others so all actions
are myopically selected
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Approximation Performance of Anaconda

Theorem 1 ( ) M| = max [ M;]

2) __/ & = max o

o If the emergent network is anything in between, when t > O(|M||N|? &2 / e

L[f(A)] 2 (1= ) f(AOT) 1;? (1=e™) 2 BlCu(ND) -
N

1 — Ky
1 — /{f(l — 6_’%f)

Zﬁf(‘AOPT)a BE 1_’11“7

/
|

B increases with larger «; and “better” M; [Xu and Tzoumas, arXiv '24]

Network that is not fully connected emerges
after agents select neighbors individually
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Decision Speed of Anaconda

Anaconda terminates in O |(7¢ |Vi| + a; + 7. ) IM||N]? /€| time.
A ‘ _

/ \ \communication delay 7

function evaluation delay 7

Vi| + a; = max (|V;| + «;)
1EN
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Decision Speed of Anaconda

Anaconda terminates in O |(7¢ |Vi| + a; + 7. ) IM||N]? /€| time.

Comparison to SOTA decision time: In sparse directed networks where |[M;| = o(|N]),
- Anaconda: O(|N]? /€)
- Sequential Greedy with depth-first search:! O(|N|°)

IKonda, Grimsman, Marden, ACC '22
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Simulation: Area Monitoring with Multiple Cameras

Agents: 60 downward-facing cameras N randomly located above a 100 x 100
static environment, each with a circular FOV of radius 7

Actions: Directions V; to place FOV (i has no knowledge of V;, Vj # 1)

Communication: Each camera 7 € N can receive images of FOV from other
cameras within its communication range, denoted as M;

Objective function: Area f({a;+};c ) covered by all cameras’ FOV's, each
in direction a; ; € V;, Vt

Xu and Tzoumas Performance-Aware Self-Configurable Multi-Agent Networks



Simulation: Area Monitoring with Multiple Cameras

Compared algorithms:
a. Anaconda with different uniform bandwidth budgets: (N;:| < «a;, a; =a €{0,1,3,5}, Vie N
b. DFS-SG [Konda et al., ACC '22]: N;: = M,

— Sequential Greedy [Fisher et al., Math Prog Studies '78] on a pre-defined connected network
— Agents’ action-selection order determined by depth-first search (DFS)
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Simulation: Area Monitoring with Multiple Cameras

Compared algorithms:
a. Anaconda with different uniform bandwidth budgets: (N;:| < «a;, a; =a €{0,1,3,5}, Vie N
b. DFS-SG [Konda et al., ACC '22]: N;: = M,

— Sequential Greedy [Fisher et al., Math Prog Studies '78] on a pre-defined connected network
— Agents’ action-selection order determined by depth-first search (DFS)

Monte-Carlo simulation setup:

a. Scenarios with different computation & communication loads: 30 trials x 5 algorithms x 3
combinations of function evaluation delay 74 & communication delay 7.

b. Network connectivity: for all trials, sample communication range ¢; € [15,20],Vi € N for network
connectivity (required by DFS-SG only)

Xu and Tzoumas Performance-Aware Self-Configurable Multi-Agent Networks




Simulation Results

30 30
70 1 70 -
60 - 60 - ,
" e A e
50 : "J—N"_ﬁ,wr"'

DFS-SG
Neighbors <=0

L
-

—— Neighbors <= |

(-
S

— Neighbors <=3

Percentage of Covered Area (%)
N
S
Percentage of Covered Area (%)
Percentage of Covered Area (%)
N
S

10 —— Neighbors <=5 101
O 10 20 30 40 50 60 70 80 0O 10 20 30 40 50 60 70 80 0O 10 20 30 40 50 60 70 80
Time (s) Time (s) Time (s)
7¢ = 0.01s, 7. = 0.05s 7¢ = 0.01s, 7. = 0.01s 7¢ = 0.00s, 7. = 0.01s

Anaconda with different uniform bandwidth budgets: As bandwidth budget increases, Anaconda’s
coverage performance increases (Theorem 1) and convergence speed decreases (Proposition 2)
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Simulation Results
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Anaconda with different uniform bandwidth budgets: As bandwidth budget increases, Anaconda’s
coverage performance increases (Theorem 1) and convergence speed decreases (Proposition 2)

Comparison with DFS-SG: achieve comparable coverage performance after convergence

e Anaconda starts with higher coverage performance: cameras all select FOV's from the start per
Anaconda but sequentially per DFS-SG

e Anaconda’s coverage performance converges faster when communication delay 7. is high: e.g.,
when 7. > 7¢
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Summary and Extensions

o Introduce ¢ v, X o vien o e en T 10 EN)

e Provide distributed alternating optimization algorithm
- Neighborhood self-configuration
- Quantify impact of network configuration to suboptimality
- Scalability vs. optimality trade-off

e One-order faster than SOTA when accounting for inter-agent communication delay

Extensions:

i

e Unknown a priori f

DFS-SG
30 - Neighbors <= 0 . . . .
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10 1 — Neighbors 2='5 e Tight approximation bound
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